Using structural priming to test links between constructions:

Priming between caused-motion and resultative sentences

SLE, Leipzig, 22 August 2019 Workshop 'Language as Network: How to conceive of a usage-based constructicon'

Tobias Ungerer, University of Edinburgh <u>s1773505@ed.ac.uk</u> What can structural priming tell us about speakers' representations of **distinct but related** grammatical constructions?

A case study

- Goldberg (1995) argues that the caused-motion construction in (1) and the resultative construction in (2) are related via metaphorical extension
 - (1) Bill rolled the ball down the hill. ('CAUSE TO MOVE')
 - (2) Herman hammered the metal flat. ('CAUSE TO BECOME')
- Metaphorical extension links are part of Goldberg's four-way classification of *'inheritance links'*, i.e. a model of the primary relations which interrelate grammatical constructions in speakers' mental networks

Outline of the talk

1 Previous research on structural priming

What is it and under which conditions does it occur?

2 Two exploratory experiments

Structural priming between the English caused-motion and resultative construction

3 Conclusion

Methodological potential and challenges; further research questions

Some basics

- "Priming effects occur when processing a stimulus with particular characteristics affects subsequent processing of another stimulus with the same or related characteristics" (Branigan & Pickering, 2017, p. 6)
- Primes can facilitate target processing or hinder it (e.g. Hilpert & Correia Saavedra, 2016)
- Lexical priming since Meyer & Schvaneveldt (1971): Participants recognise nurse faster after having seen doctor than after seeing butter
- Structural priming since Bock (1986): Participants are more likely to produce an active sentence after having read an active rather than a passive sentence, and vice versa

Under which conditions does structural priming occur?

- ... an ongoing controversy
- Can be caused by syntactic and/or semantic similarities (e.g. Bock & Loebell, 1990; Hare & Goldberg, 1999; Ziegler et al., in press)
- Occurs both in **production and comprehension** (e.g. Segaert et al., 2013; Tooley & Bock, 2014)
- May be enhanced by repetition of the same verb between prime and target, a so-called 'lexical boost' (Pickering & Branigan, 1998)
 - → but some studies have found similar effects with and without lexical boost (Tooley & Bock, 2014)

Two exploratory experiments

Distinct but related constructions

Caused-motion (CM) Resultative (RES)

Research questions specified

- 1 Can structural priming in comprehension be observed between the two constructions?
- 2 Does priming occur equally in both directions, or is there an asymmetric effect (e.g. from metaphorical source to target)?
- 3 Which role does lexical boost play?
- 4 Which experimental methods and task designs are most effective to test speakers' representations of the two constructions?

Experiment 1 & 2: Participants

Experiment 1	Experiment 2
159 participants	160 participants

Adult English native speakers (self-reported) living in the U.S.

Recruited online via Amazon Mechanical Turk

	Experiment 1	Experiment 2
Primes	3 prime types: RES: e.g. Allan w CM: e.g. Steve pu UNREL: e.g. Jen	viped the table dry. [adjectival] ushed the chair into the kitchen. ny managed to escape.
Targets	Marginally acceptable RES: e.g. Robert kissed Sandra unconscious. Leslie frightened Fred awake. RES CM CM CM CM CM CM CM CM CM CM CM CM CM	Same as prime constructions, i.e. all 3 constructions appear as prime and target $\begin{array}{c} RES \\ CM \\ CM \end{array} \bigoplus \begin{array}{c} \bullet \end{array} \bigoplus \begin{array}{c} RES \\ CM \\ UNREL \end{array} \bigoplus \begin{array}{c} \bullet \end{array} \bigoplus \begin{array}{c} CM \\ UNREL \end{array}$
Verbs	All sentences use a different verb (no lexical boost)	Each verb occurs in 2 RES + 2 CM items, i.e. prime-target pairs can occur with and without lexical boost

Experiment 1 & 2: Methods

Experiment 1

Task

Self-paced reading (word by word)+ speeded acceptability judgments (1-5 Likert scale, max. 4 seconds) **Experiment 2**

Joe

pushed

Bob

into

the

kitchen.

Press the number button on your keyboard.

Experiment 1 & 2: Methods

Experiment 1

Self-paced reading (word by word)+ speeded acceptability judgments (1-5 Likert scale, max. 4 seconds)

Experiment 2

Self-paced reading (word by word) with maze task (Forster et al., 2009; experiment code from Boyce et al., 2019) Words so far: 0

Correct! Press any key to continue

Analysis

	Experiment 1	Experiment 2	
Task	Self-paced reading (word by word) + speeded acceptability judgments (1-5 Likert scale, max. 4 seconds)	Self-paced reading (word by word) with maze task (Forster et al., 2009; experiment code from Boyce et al., 2019)	
	Task engages participants' deep processing		
Why?	Several outcome measures	No spill-over effects	
		Potentially more sensitive than pure self-paced reading (Boyce et al., 2019)	
Outcome	Reading time,	Reading time,	
measures	judgment score, judgment time	(Correctness of maze choices)	
	Linear mixed offects readels and erdinal regression		

Linear mixed effects models and ordinal regression with R packages 'ImerTest' (Kuznetsova et al., 2017) and 'ordinal' (Christensen, 2018)

Experiment 1: Results

RES targets e.g. Allan wiped the table dry.

- Significant effect of priming condition on reading time: RES were read approx.19 ms faster after CM primes than after UNREL primes (p = .001)
- Surprisingly: no decrease in reading time of RES targets after RES primes
- No effect of priming on judgment score or judgment time

Critical region 1: whole sentence (- subject)

 RES targets:
 e.g.
 Allan
 wiped
 the table
 dry.
 Image: dry.

 <th dry.

Critical region 2: final complement phrase

Experiment 2: Results

Reading times for overall sentence (without subject)

- RES targets are read faster after RES primes than after UNREL and CM
- CM targets are read faster after CM primes than after UNREL (and RES?)
- UNREL targets are not affected by prime construction

Prime cxn

Resultative
 Caused-motion
 Unrelated

Experiment 2: Results

Reading times for first word of final complement phrase

- RES targets are read more slowly after CM primes than after RES and UNREL (by approx. 39 ms and 25 ms respectively)
- CM targets are read faster after CM primes than after RES and UNREL (by approx. 67 ms and 48 ms respectively)

Prime cxn

Priming *within* the two target constructions, i.e. RES \rightarrow RES and CM \rightarrow CM, compared to unrelated controls

- Facilitation of target processing
- But not under all conditions where it would be expected (e.g. Exp. 1)

Priming *between* the two target constructions, but only in the direction $CM \rightarrow RES$

- Potential asymmetry from metaphorical source to target
- Facilitatory effect (Exp. 1) vs. inhibitory effect (Exp. 2) why these differences?

No effect of lexical boost on priming

There might even be a tendency towards inhibition (!)

Conclusion: Methodological potential & challenges

Priming in comprehension

- Seems to work
- Affords a lot of flexibility over production priming
- Effects are small to medium-sized \rightarrow use sufficiently large sample sizes

Methods

- Reading time measures seem promising
- Participants' deep processing needs to be ensured by combining self-paced reading with additional task requirements (e.g. maze task)

Materials

- Controlling for lexical artifacts (animacy, verb class, collocations etc.) is challenging
- Lexical boost does not seem to be a necessary requirement for observing inter-constructional priming (and its possible inhibitory effect deserves further investigation)

Conclusion: Further research questions

Types of constructional links

- Can priming contribute direct evidence about the *type* of link that relates two constructions (e.g. metaphor, taxonomy, meronymy, etc.)?
- Can differences in priming effect size help distinguish between linking types?

Facilitatory vs. inhibitory priming effects

 Under which conditions do they arise? What do they tell us about linguistic representations and processing?

Experimental design

- Which materials, tasks and procedures can maximise our chances of detecting priming effects between distinct but related constructions?
- What benefits could alternative methods contribute (e.g. eye-tracking, brain measures)?

And extending the paradigm to other constructions, other languages, etc. ...

References

Bock, J. K. (1986). Syntactic persistence in language production. Cognitive Psychology, 18(3), 355-87.

Bock, K., & Loebell, H. (1990). Framing sentences. Cognition, 35(1), 1-39.

Boyce, V., Futrell, R., & Levy, R. (2019, July 1). Maze made easy: Better and easier measurement of incremental processing difficulty. Preprint. doi:10.31234/osf.io/b7nqd

Branigan, H. P., & Pickering, M. J. (2017). An experimental approach to linguistic representation. Behavioral and Brain Sciences, 40, 1-61.

Christensen, R. H. B. (2018). ordinal: Regression models for ordinal data. Version 2018.4-19. http://www.cran.r-project.org/package=or-dinal/

Forster, K. I., Guerrera, C., & Elliot, L. (2009) The maze task: Measuring forced incremental sentence processing time. *Behavior Research Methods,* 41(1), 163-171.

Goldberg, A. E. (1995). *Constructions: A Construction Grammar approach to argument structure.* Chicago, IL: The University of Chicago Press. Hare, M. L., & Goldberg, A. E. (1999). Structural priming: Purely syntactic? In M. Hahn & S. C. Stoness (Eds.), *Proceedings of the twenty-first annual*

meeting of the Cognitive Science Society (pp. 208-11). Mahwah, NJ: Erlbaum.

Hilpert, M., & Correia Saavedra, D. (2016). The unidirectionality of semantic changes in grammaticalization: An experimental approach to the asymmetric priming hypothesis. *English Language and Linguistics*, *22*(3), 357-380.

Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). ImerTest package: Tests in linear mixed effects models. Journal of Statistical Software, 82(13), 1-26.

Meyer, D. E., & Schvaneveldt, R. W. (1971). Facilitation in recognizing pairs of words: Evidence of a dependence between retrieval operations. *Journal of Experimental Psychology*, 90(2), 227-234.

Pickering, M. J., & Branigan, H. P. (1998). The representation of verbs: Evidence from syntactic priming in language production. *Journal of Memory and Language, 39*(4), 633-651.

Segaert, K., Kempen, G., Petersson, K. M., & Hagoort, P. (2013). Syntactic priming and the lexical boost effect during sentence production and sentence comprehension: An fMRI study. *Brain and Language*, *124*(2), 174-183.

Tooley, K. M., & Bock, K. (2014). On the parity of structural persistence in language production and comprehension. *Cognition, 132*(2), 101-136. Ziegler, J., Bencini, G., Goldberg, A., & Snedeker, J. (in press). How abstract is syntax? Evidence from structural priming. Preprint. *Cognition.* doi:10.31234/osf.io/s2bcf